(S)-2 from D-mannitol and the 94.4% of *(R)-2* from **L**serine.¹¹ Moreover, starting with deuterated D-glucose, stereospecifically labeled glycerols are available by simple chemical manipulation from **4c-e;** further protection-deprotection technique would allow the preparation of glycerol labeled in the **2-** or 3-position. Chirally deuterated glycerols are valuable intermediates for use in the determination of biosynthetic pathways. Their preparation **has** presented a rather complex synthetic problem **as** shown from recent examples in the literature.¹²

Experimental Section

The proton *(3OO-MHz)* and deuterium (46.1-MHz) spectra have been acquired on a Bruker CXP 300 spectrometer. The ²H NMR experiments were performed with proton broad band decoupling. The 13C spectra (62.9 **MHz)** were run on a Bruker AC250 spectrometer. In the *case* of enriched samples, the 13C incorporation was determined using the inverse gated pulse sequence. With this technique the IH/'% **NOE** contribution to the **13C** signal intensities is suppressed since the broad band proton decoupling is *on* during the acquisition and *off* during the relaxation delay (7 *8).*

GC/MS analyses were run on a triple-stage quadrupole mass spectrometer Finnigan MAT TSQ 70 equipped with a **Varian** *³⁴⁰⁰* gas chromatograph. The elution conditione were **as** follows: SE *54* capillary column, carrier gas He (1.2 psi), injector temperature 280 °C, transfer line temperature 270 °C, oven temperature programmed as follows: 100 °C, 2 min, 220 °C rate 12 °C/min, final isotherm 220 \degree C for 15 min. Isotopic enrichments were determined according to standard literature methods.12 Mass spectra of compounds **4c-e** were acquired in profile mode, with **a scan** range from *m/z* 95 to 105 and a **total** scan time of 0.30 *8.* The fragments monitored in this way correspond to $[C_5H_9O_2]^+,$ $[C_6H_8DO_2]^+$, and $[C_6H_7D_2O_2]^+$, respectively.

Preparation of (R)-S-Benzyl Thioglycerate (2). In an open **jar,** 20 L of water at 35 "C was mixed with 1.5 **kg** of commercially available baker's yeast and 0.5 *kg* of glucose. After 30 min, 20 g of benzyl mercaptan in **20 mL** of EtOH was added dropwise and the fermentation left under vigorous stirring at 25 °C for 18 h. Ethyl acetate (2 **L)** was poured into the reaction flask, and the organic phase was filtered through a Celite pad. The procedure was repeated three times. The organic phase **was** dried and the solvent evaporated under reduced pressure to yield 22 g of crude oil. Purification on silica gel gave, fit, 14 g of **unreacted** benzyl mercaptan followed by 1.6 g of **2 as** an **oil** which solidified on standing, $[\alpha]^{\infty}$ ^D +69.5° (c 1, MeOH). Anal. Calcd for $C_{10}H_{12}O_3S$: C, *56.58,* H, 5.70; S, 15.11. Found: C, *56.90;* H, 5.85; S, 15.10. Experiments with labeled glucose were performed using the 13C and **2H** containing compound in a **1:20** ratio with natural glucose. In feeding [1-2H]glucose a 1:l dilution waa used. In these *cases,* a **total** of 20 g of glucose and 250 g of b.y. were used along with 10 g of benzy mercaptan. The yield of compound 2 was 200 mg of purified compound from each run.

Determination of **the Optical Purity of Benzyl Thioglycerate (2). Preparation of (4R)-2,2-Dimethyl-4-(benzyl(thiocarbonyl))-l,3-dioxolane (4) and (45)-2,2-Dimethyl-1,3-dioxolane4-methanol(3).** The diol **2** (1 g, 4.7 mmol) was diesolved in *50* **mL** of *dry* acetone, and 0.1 g of p-TsOH and 1.2 **mL** (10 mmol) of **dimethoxy** propane were added in one portion at *25* **OC. The** solution **was heated** at reflux for 3 **h, cooled,** diluted with ethyl acetate, and washed with *5%* aqueous solution of NaHCO₃. The organic phase was dried and the solvent evaporated under vacuum to yield an oil which was purified on silica, eluent hexane, **so as** to obtain **(4R)-2,2-dimethyl-4-(benzyl(thio**carbonyl))-1,3-dioxolane (4, 1 g, 3.9 mmol, 83%, oil): $[\alpha]_{D}^{\infty}$ +41.7 *(c* 1, MeOH); GC/EI MS (SE *54* capillary column) **m/z** 252 M+ (1), 234 (0.5), 194 (3), 166 (83), 121 (9), 101 (48), 91 (78), 73 (100),

65 (63). Anal. Calcd for C₁₃H₁₆O₃S: C, 61.88; H, 6.39; S, 12.76. Found: C, 61.76 ; H, 6.42 ; S, 12.80 .

In a three-necked round-bottomed **flask** with nitrogen inlet, dropping funnel, and condenser **was** suspended **LiAIlI,** (0.1 g, 2.6 mmol) in 30 mL of anhydrous ether, and 4 (1 g, 3.9 mmol) diluted in **5 mL** of ether was added dropwise. The reaction mixture was stirred at 25 °C for 1 h, then ethyl acetate (5 mL) was added dropwise. The crude reaction solution was poured into ice and extracted with ether. The organic phase waa dried and evaporated under reduced pressure **so as** to obtain crude **3.** The above protected glycerol was converted, **as** reported in the literature,'O into the (R) -(+)-MTPA ester and analyzed. Comparison with GLC mixtures of **known** composition allowed us to assign the S absolute configuration to compound **3** which is composed of more than 98.6% of one enantiomer.

NMR Data. Compound 2: ¹H NMR (CDCl₃) δ 3.89 (2 H, d, $(2 H, broad, 2 OH), 7.23 (5 H, m, C₆H₅);$ ¹³C **NMR** $(CDCl₃)$ δ , 32.84 $H-3, J_{2,3} = 4.1$ Hz), 4.15 (2 H, *s*, SCH₂), 4.32 (1 H, *t*, H-2), 4.40 $(SCH₂), 64.29 (C-3), 78.16 (C-2), 201.79 (C-1).$

Compound 2a (from feeding experiments with [1-¹³C]glucose): ¹³C **NMR** (CDCl₃) δ 32.93 (SCH₂, integration 3.74), 64.33 (C-3, 7.53),78.09 (C-2,3.66), 201.81 (C-1,3.85); ca 60% of 13C dilution at C-3.

Compound 2b (from feeding experiments with $[6^{-13}C]$ glucose); 13 C NMR (CDCl₃) δ 32.79 (SCH₂, integration 12.07), 64.25 (C-3, 30.561, 78.21 (C-2, 11.401, 202.22 (C-1, 11.58); ca. **50%** of 13C dilution at C-3.

Compound 4: ¹H NMR (acetone-d₆) δ 1.34 (3 H, s, CH₃), 1.50 $(3 H, s, CH_3)$, 4.02 (1 H, dd, H-5, $J_{5,5'} = 8.8$ Hz, $J_{4,5} = 4.0$ Hz), 4.10 (2 H, s, SCH₂), 4.28 (1 H, dd, H-5', $J_{4,5'} = 7.4$ Hz), 7.20-7.35

(5 H, m, C_6H_5).
Compound 4c (from feeding experiments with $[6,6^{-2}H_2]$ glum): **2H** *NMR* (acetone) **6** 4.03 *(%-5),* 4.28 *(%-5')* **(see Figure** 3).

Compound 4d (from feeding experiments with [2-²H]glucose): ²H NMR (acetone) δ 4.03 (²H-5) (see Figure 3).

Compound 4e (from feeding experiments with [1-²H]glucose): ²H NMR (acetone) δ 4.27 (²H-5') (see Figure 3).

Acknowledgment. We thank **Dr.** G. Allegrone for some MS measurements and Piano Finalizzato CNR Chimica Fine e Secondaria **2** for financial support.

Registry No. 2, 127812-04-8; D-glucose, 50-99-7; benzyl mercaptan, 100-53-8; glyceraldehyde 3-phosphate, 142-10-9; dihydroxyacetone phosphate, 57-04-5.

Facile Synthesis of 2',5'-Dideoxy-5-fluorouridine by Thymidine Phosphorylase

Whi-Gun Chae, Nina S. Cauchon, John F. Kozlowski, and Ching-jer Chang*

Departhent of Medicinal Chemistry and Pharmacognosy, School of Pharmacy and Pharmacal Sciences, Purdue University, West Lafayette, Indiana 47907

Received August 20,1991

Introduction

The antitumor agent 5-fluorouracil (BFUra, **1)** was first synthesized by Heidelberger et **al.** in 1957.' Many attempts have been made since then to prepare derivatives of 5-FUra in the search for compounds with greater selectivity *against* tumor tissuea.2-4 One of **theae** compounds,

⁽¹¹⁾ **Hirth, G.; Walter, W.** *Helu. Chim. Acta 1985,68,* **1863.**

⁽¹²⁾ Matteeon, D. **S.; Kandil,** A. **R.; Soundamratan, R.** *J. Am. Chem. SOC. 1990,112,3964* **and referenma cited therein. Uzawa, H.; Nishida, Y.; Hanada, S.; Ohrui, H.; Meguro, H.** *J. Chem. SOC., Chem. Commun. 1989,* **862.**

⁽¹³⁾ **Biemaun, V.** *Moes Spectrometry. Organic Chemical Application;* **McGraw-Hilk New York, 1962.**

⁽¹⁾ Duschineky, R; Pleven, E,; Heidelberg, D. *J. Am. Chem. Soc. 1967, 79,* **4667.**

⁽²⁾ Atmetrong, R. D.; Diasio, **R. B.** *Cancer Rea. 1981,41,4891.*

⁽³⁾ **Au, J. L-S.;** Ruetrum, **Y. M.; Minowada, J.; Srivaetava, B. I. 5.** *Biochem. Pharmacol. 1988,32,641.*

⁽⁴⁾ Miwa, M.; Cook, A.; Iehiteuka, **H,** *Chem. Pharm. Bull. 1986,34,* **4226.**

Scheme I. Reaction Catalyzed by Thymidine Phosphorylase (TP) in 2',6'-Dideoxyribosyl Transfer

$$
2', 5'-dideoxypyrimidine nucleoside + Pi
$$

$$
\left\{\right\} \text{ TP} \tag{A}
$$

pyrimidine + 2',5'-dideoxyribose-1'-phosphate

2.5'didcoxyribox- 1'-phosphate + **modified pyrimidine base**

$$
\text{TP} \tag{B}
$$

Pi + **2',5'-didcoxyribosyl-modified pyrimidine nucleoside**

2'5'didcoxypyrimide nucleoside + **modified pyrimidine base**

(C) It TP

2'.5'dideoxy-modified pyrimidine nuclwside + **pyrimidine**

 $5'$ -deoxy-5-fluorouridine ($5'$ -dFU) was found to possess a better therapeutic index than 5-FUra in several murine tumors6 and selective activity against human B tumor **cells** in culture.^{2,3} We therefore decided to study 2',5'-dideoxy-5-fluorouridine (2',5'-ddFU, 2), another derivative of bFUra that could potentially show promising antitumor activity.

2',5'-Dideoxy-bfluorouridine was originally synthesized by reduction of a 2',5'-dichloro intermediate with tributyltin hydride: with an overall yield of **33%** on the basis of uridine. It was **also** prepared from 2'-deoxy-5-fluorouridine by iodination using **methyltriphenoxyphosphonium** iodide followed by catalytic reduction (overall yield **a%)?**

Here, we describe a facile synthesis of 2',5'-ddFU by **an** enzymatic dideoxyribosyl transfer reaction. Several nucleoside N-transfer reactions via phosphate **esters** of **sugars,** such as transribosylation,⁸ transdeoxyribosylation,⁹ transarabinosylation,¹⁰ transaminoribosylation,¹¹ and trans-2',3'-dideoxyribosylation,^{12,13} by nucleoside phosphorylases have been previously described, but this is the first report of a **trans-2',5'-dideoxyribosylation** reaction.

Results and Discussion

Synthesis of 2',S'-Dideoxy-S-fluorouridine. The deoxyribosyl transfer reaction catalyzed by nucleoside phosphorylases **has** been shown to involve the formation and utilization of deoxyribose-1'-phosphate.¹¹ Accordingly, the method for the enzymatic synthesis of 2',5'-dideoxyribonucleoside analogues involves a pair of coupled reactions. The first reaction (Scheme IA) is the phosphorolysis of a dideoxypyrimidine nucleoside catalyzed by thymidine phosphorylase to form **2',5'-dideoxyribose-l'-phosphate.** The second reaction (Scheme IB) is the synthesis of the desired product from the **2',5'-dideoxyribosel-phosphate** ester generated in the first reaction and a modified pyrimidine base. The net result is the transfer of a dideoxyribosyl moiety from a pyrimidine nucleoside to a modified

(8) Utagawa, T.; Yamanaka, S. Hakko to Kogyo 1981, 39, 927.
(9) Holy, A.; Votruba, I. Nucleic Acids Res. Symp. Ser. 1987, 18, 69. **(10) Utagawa, T.; Morisawa, H.; Yamanalra, S.; Yamazaki, A.; Yoehi-**

"The target cella were A-649 (human lung adenocarcinoma), MCF-7 (human breast adenocarcinoma) and HT-29 (human colon adenocarcinoma) cells. These assays were carried out at the Pur**due Cell Culture Laboratory, following the microculture tetrazoli**um assay method. *b* Reference 4.

pyrimidine base (Scheme IC).

Quantitative and Qualitative Analysis of Reaction Mixture. The formation of 2',5'-dideoxy-5-fluorouridine was monitored simultaneously by *'gF NMR* and HPLC for 8 h at room temperature. The identities of all the HPLC peaks were confirmed by comparing the complete UV spectra on the upslope, apex, and downslope of each **peak** with those of the authentic standard compounds, using a photodiode-array detector. ¹⁹F NMR monitoring enables product quantitation directly from the reaction mixture, based on integration of the fluorine peaks from substrate (5-FUra) and product (2',5'-ddFU). Since these compounds have only one fluorine atom, the integration is directly proportional to the amount of 5-FUra left and of 2',5'-ddFU produced. The results obtained by the chromatographic analysis and by the direct 19F *NMR* spectroscopic method are in **good** agreement, with **69%** conversion.

Biological Activity of 2,Y-Dideoxy-S-fluoruridine. The cytotoxicity of 5-FUra is attributed to its nucleotides, 5-fluorouridine 5'-triphosphate and 5-fluorodeoxyuridine 5'-monophoaphate, that competitively inhibit thymidylate synthetase.¹⁴ 2',5'-Dideoxy-5-fluorouridine would not be expeded to directly exhibit cytotoxicity due to the absence of the 5'-hydroxyl group. **An** intracellular activation to 5-FUra by thymidine phosphorylase would be required. It has been demonstrated that phosphorylase activity in human tumor tissue is significantly higher than in normal tissue from the same organ.^{15,16} The degree of activation of 2',5'-ddFU to 5FUra in tumor tissue will thus be higher and therefore the cytotoxicity stronger. Therefore, it is possible **that 2',5'-dideoxy-5-fluorouridine** will have more selective anticancer activity than 5-FUra itself. However, the previously reported studies indicated that 2',5'-ddFU did not inhibit RNA and DNA syntheais in cultured **L1210** murine leukemia cells^{6,17} and was inactive against **sarcoma**

⁽⁵⁾ Iehituka, M.; Miwa, M.; Takemoto, K.; **Kukkuoka,** K.; **Itoga, A.; (6) Hrebabecky, H.; Beranek, J. 2016.**
 (6) Hrebabecky, H.; Beranek, J. Collect. Czech. Chem. Commun. 1978,

^{43,3268.}

⁽⁷⁾ Cook, A. F.; Holman, M. J. *J. Med. Chem.* **1980,23,852.**

naga, F.; Hirose, Y. *Agric. Biol. Chem.* 1985, 49, 2425.
__ (11) Utagawa, T.; Morisawa, H.; Yamanaka, S.; Yamazaki, A.; Hirose, **Y.** *Agnc. Biol. Chem.* **1986,49,2711.**

⁽¹²⁾ Krenitsky, T. A. E.P. 285432 1988.
(13) Shiragami, H.; Shirae, H.; Irie, Y.; Yokozeki, K.; Yasuda, N. Nu-
cleic Acids Res. Symp. Ser. 1988, 20, 17.

⁽¹⁴⁾ *Cory,* **J. G.; Chiba, P.** *Pharmacal. Therapeutics* **1986, 29, 111. (15) Maehara, Y.; Kueumoto, T.; Sakaguchi, Y.;** Kusumoto, **H.; Kido, Y.;** *Ami,* **H.;** *Sugimachi,* **K.** *Cancer* **1989,63,96.**

⁽¹⁶⁾ Choong, Y. S.; Lee, S. P.; Alley, P. A. *Exp. Pathol.* **1988,33,23.**

 $\bf{Table~II.~Observed~^lH^{-l}H~NOEs~(\%)~and~^lH^{-l}H~Distances~(in~\AA)^d}$

protons	distance for S conformer (A)	distance for N conformer (A)	av distance for 62% S conformer (A)	observed NOE(%)	NOE-derived distance (Å)
$H6-H2'6$	2.4	2.8	2.6	3.7	2.3
H6-H2' α	3.8	4.1	3.9	0.0	
$H2'\beta - H2'\alpha$	1.8	1.8	1.8	14.7	(1.8)
$H1'$ -H2' β	3.1	2.9	3.0	0.7	3.0
$H1'$ -H2' α	2.4	2.3	2.4	4.0	$2.2\,$
$H2'$ -H2' β	2.4	2.4	2.4	3.1	2.3
$H2'$ -H2' α	2.7	3.0	$2.8\,$	2.0	2.5

^oThe ¹H-¹H distances were measured from the two CHARMM minimum energy conformations of the dideoxyribose ring in 2'.5'-ddFU, i.e., **the S and** *N* **conformers shown in Figure 1. The NOEs were calculated from the volume integrals in the 700-me mixing time NOESY** spectrum. The NOE-derived distances were calculated using the distance between $H2'\alpha$ and $H2'\beta$ as the reference distance, as described in **the text.**

180J in mice.' Recently, Miwa and Cook et al. reported that thymidine phosphorylase predominates in human tumors, whereas uridine phosphorylase predominates in murine tumors.⁴ Thus, 2',5'-ddFU could not be effectively activated to its nucleotide in a murine tumor. Table I shows that the in vitro antitumor cytotoxicity of 2',5'-ddFU against human nonsmall cell lung adenocarcinoma (A-549) and human colon carcinoma (HT-29) is comparable to that of 5-FUra. Its in vivo antitumor activity remains to be evaluated.

Conformational Analysis of 2',5'-Dideoxy-5-fluorouridine. The two most important factors to be considered in discussing the conformation of 2',5'-ddFU are the rotation about the glycosyl Nl-Cl' bond and the sugar pucker. 'H-lH 2-D NOE *NMR* spectroscopy was used for the conformational analysis of this nucleoside in DMSO solution, and these resulta were then compared with those obtained from molecular modeling studies. The 'H NMR chemical **shift** and coupling constant data are summarized in the Experimental Section.

Pyrimidine nucleosides generally exist in the anti conformation about the glycosyl bond,¹⁸ as defined by the torsion angle χ (O1[']-C1[']-N1-C2 in pyrimidines). Only the presence of bulky substituents at C6 of pyrimidines has been shown to induce a preference for the syn form.¹⁹ In the 2-D NOE spectrum of 2',5'-ddFU, the proton at C6 shows a strong cross-peak with $H2\beta$ only, suggesting that the preferred conformation is anti in **DMSO** solution. Also, in syn pyrimidine nucleosides, the $H2/\beta$ NMR chemical shift is displaced downfield by about 0.6 ppm relative to that in anti nucleosides.²⁰ In this case, the value for $\delta_{H2\beta}$ is 2.19 ppm, which is very **similar** to that in thymidine (2.10 ppm)% and in **5-iodo-5'-amino-2',5'-dideoxyuridine** (2.19 ppm),²¹ both of which are in the anti conformation.

The conformation of the sugar ring (i.e., the dideoxyribose) is not fixed but is well-known to exist in dynamic equilibrium between the S (C2'-endo) and *N* (C3'-endo) conformers in solution²² (Figure 1). The percentage of the 3'-endo conformer in the equilibrium mixture can be estimated with the formula $\ddot{\%}$ *N* = 100 $J_{H3'H4'}/(J_{H1'H2'\beta}$ + J_{H3H4} ,²³ which yields a value of 38% $N(\hat{J}_{H1H2\beta} = 6.7 \text{ Hz})$, $J_{H3H4'} = 4.1$ Hz). The values of the coupling constants for 2',5'-ddFU (and hence the sugar pucker) are very similar to those for thymidine,²⁰ 5-iodo-5'-amino-2',5'-dideoxyuridine, 21 and $2'$ -deoxyuridine. 24

(19) Cody, V.; Kalman, **T. I.** *Nucleosides Nucleotides* **1985,4, 587. (20) George, A. L.; Hruaka, F. E.; Ogilvie, K. K.; Holy, A.** *Can. J. Chem.* **1978,56, 1170.**

Chem. Soc. 1979, 101, 3353.
(22) Altona, C.; Sundaralingam, M. *J. Am. Chem. Soc.* 1972, *94, 8205.*
(23) Davies, D. B.; Danyluk, S. S. *Biochemistry* 1974, *13, 4417.*

Figure 1. S $(C2'$ -endo) and N $(C3'$ -endo) conformers of $2'.5'$ **ddFU from QUANTA. These two** minimum **energy conformations of the dideoxyribose ring were obtained aa described in the text. The** distances **reported in Table II were measured** from theae **two conformers.**

The concept of pseudorotation, **as** defined by Altona and Sundaralingam,²² allows an accurate description of ribose and deoxyribose ring conformations in nucleoside derivatives by means of only two parameters, $\tau_{\rm m}$ (the amplitude puckering) and P (the phase angle). Both τ_m and P are functions of the five defined ring torsion angles, which are constrained in order to examine all the conformations of the ribose around the pseudorotational circle.²⁵ A less constrained path than pure pseudorotation was used in **the** present study: only one ring torsion angle, τ_3 , was constrained as $\phi' = \tau_3 + 120^{\circ}$, where $\phi' = O3' - C3' - C2' - C1'$.^{25,26} ϕ' was rotated at intervals of 10° from 60° to 170°, following the procedures of Orozco et al.26 The glycosyl torsion angle χ was initially set at 240°, which lies in the anti range; it is similar to that found in other halogenated nucleosides²¹ and identical to that in 5-fluoro-2'-deoxyuridine.²⁷

After optimization at each stage, two **minima** were found at values of $\phi' = 80^{\circ}$ (C2'-endo; *S*) and $\phi' = 147^{\circ}$ (C3'-endo; **N).** Intramolecular 'H-lH distances were then measured for both these conformers. The resulting distances, when averaged according to the observed equilibrium populations in solution (i.e., 62% S, calculated earlier), correlated well with the observed $^1H^{-1}H$ NOEs in the 700-ms mixing time NOESY spectrum (Table 11). In particular, the observed NOE between H6 and H2' β (3.7%) and that between H3' and H2' α (2.0%) offer evidence that the 2',5'-dideoxyribose ring in 2',5'-ddFU mainly exists **as** the S conformer in DMSO solution. The 1 H- 1 H internuclear distances calculated from the ratios of the enhancements using the known distance between $H2'\alpha$ and $H2'\beta$ (1.8 Å) **as** the reference distance28 are also shown in Table 11.

in Structural and Conformational Analysis; **VCH: New York, 1989.**

⁽¹⁷⁾ Beranek, J.; Acton, E. M. *Collect. Czech. Chem. Commun.* **1984, 49, 2651.**

⁽¹⁸⁾ **Sundaralingam, M.** *Ann. N.Y. Acad. Sci.* **1975,255, 3.**

⁽²¹⁾ Birnbaum, *G.* **I.; Lin, T.-S.; Shiau,** *G.* **T.;** Prueoff, W. **H.** J. *Am.*

⁽²⁴⁾ Schleich, T.; Blackburn, B. J.; Lapper, R. D.; Smith, I. C. P. **(25) Orozco,** M.; **Velaeco, D.; Canela, E. I.; Franco,** *R. J. Am. Chem. Biochemrcltry* **1972,11,137.**

SOC. **1990,112, 8221.**

⁽²⁶⁾ Levitt, **M.; Warshel, A.** *J. Am. Chem. SOC.* **1978,100,2607.**

⁽²⁷⁾ Harris, D. R.; MecIntyre, W. M. *Biophys. J.* **1964,4, 203. (28) Neuhaua, D.; Williamson, M.** P. *The Nuclear Overhauser Effect*

Because of the inherent flexibility of this molecule and the $r⁻⁶$ dependence of the NOE, however, these NOE-derived time-averaged distances merely represent the minimum allowable internuclear distances. The conformer population with the shortest distance between a particular pair of protons will contribute a disproportionate amount to the internuclear relaxation.²⁸

It appears that the conformation of 2',5'-ddFU is closely related to the **known** conformations of other pyrimidine 2'-deoxynucleosides.^{23,25} This similarity in conformation may partially account for its ready trans-2',5'-dideoxyribosylation by thymidine phosphorylase despite the fact that it is not a natural substrate for this enzyme.

In **summary,** we developed an enzymatic method for the facile synthesis of **2',5'-dideoxy-5-fluorouridine** by a 2',5'-dideoxyribosyl transfer reaction, which provides a new and attractive alternative to existing procedures for the synthesis of 2',5'-ddFU and other modified nucleosides.

Experimental Section

General. The melting point is uncorrected. ¹H NMR and ¹⁹F *NMR* spectra were obtained at ambient temperature at *500 MHz* for ¹H and 470 MHz for ¹⁹F. The DMSO- \tilde{d}_5 peak in the NMR solvent was used **as** the internal reference for all the 'H NMR spectra and was referenced at 2.49 ppm relative to TMS. The chemical **shifta** for **lgF** NMR were measured relative to external trifluoroacetic acid. The 2-D NOE spectra were obtained on approximately 5 mg of material and were recorded in the phase-sensitive absorption mode using the hypercomplex method.2B The sweep width was set to 4OOO *Hz* in **both** dimensions; 300-350 increments were acquired in the t_1 dimension with eight transienta for each FID, and 2048 points were collected in the t_2 dimension. The recycle time was $5 s$, and the mixing times were **500** and 700 ms. For data processing, zero-filling to 2K by 2K was carried out, and base-line corrections and sine-bell windows were used in both dimensions. The fast atom bombardment (FAB) maas spectral data were obtained in DTT/DTE (dithio t hreitol: dithioerythritol $= 3:1$) as the sample matrix.

Analytical HPLC utilized an Alltech Econosphere RP-Cl8 (150 \times 4.6 mm, 3 μ m) column, eluted at 1 mL/min with a linear gradient of 4-10% CH3CN in 50 mM HCOONH4, for 5 min. Preparative HPLC was done on an Alltech Econosphere RP-C18 $(250 \times 22.5 \text{ mm}, 10 \ \mu \text{m})$ column, eluted at 5 mL/min with a mobile phase of 15% $CH₃CN$ in water isocratically.

Molecular modeling **studies** on 2',5'-ddFU were *carried* out **using** were done with the standard **CHARMM** minimizers (steepest descents and adopted-basis Newton-Raphson methods) within **QUANTA.** The standard force-field parameter set supplied with the program was employed. A distance-dependent dielectric constant was used to mimic solvent effects, since the solvent was not explicitly included. the program **QUANTA** (v 3.0, Polygen Corp.). Energy minimizations

Enzymatic Synthesis of 2',S'-Dideoxy-5-fluorouridine. A solution of 39 mg (0.3 mmol) of 5-fluorouracil (Sigma Chemical Co.) and 22.6 mg (0.1 mmol) of $2'$,5'-dideoxythymidine (Sigma Chemical Co.) in 5 mL of 5 mM sodium phosphate buffer, pH 7.4 $(D_2O:H_2O = 3.1)$ was prepared. To this solution was added 23.8 units of thymidine phosphorylase from E. coli (Sigma Chemical Co.). A part of **this** solution (0.7 **mL)** was taken in an NMR tube for ¹⁹F NMR monitoring at 20 $^{\circ}$ C for 8 h. The rest was analyzed simultaneously by HPLC. After 8 h of reaction at room temperature, the reaction mixture was fidtered through an Amicon **filter** to remove the enzyme and to stop the reaction. The fdtrate **was** loaded on a preparative *HPLC* **column by** consecutive injections of 1.0 **mL** each. The fractions corresponding to 2',5'-dideoxy-5-fluorouridine were collected, combined, and finally freeze-dried, yielding 13.5 mg (0.059 mmol, 59%) of 2',5'-dideoxy-5-fluorouridine as a white powder: mp 168 °C (lit.⁷ mp ${}^{3}J_{\text{HF}}$ = 7.0 Hz), 6.057 (H₁, td, 1 H, ${}^{3}J_{1'2'\alpha}$ = ${}^{3}J_{1'2'\beta}$ = 6.7 Hz, ${}^{5}J_{1'5F}$ 171-173 °C); ¹H NMR (500 MHz, DMSO-d₆) δ 7.825 (H₆, 1 H,

(29) States, D. J.; Haberkom, R. A.; Reuben, D. J. J. *Magn. Reeon.* **1982,48,286.**

 $= 1.8$ *Hz*), 3.943 (H₃, dt, 1 H, $^{3}J_{3'2'2} = 6.7$ *Hz*, $^{3}J_{3'2'\alpha} = ^3J_{3'4}$ Hz), 3.765 (H₄, qd, 1 H, $^{3}J_{4'y} = 6.4$ Hz, $^{3}J_{4'3'}$ dt, 1 H, $^{2}J_{\gamma\beta\gamma\alpha} = 13.5$ Hz, $^{3}J_{\gamma\beta1}$ $(H₆, d, 3 H, ³J₆₄)$ **4.1** 4.1 *Hz),* 2.191 **(Hye,** 6.7 Hz), 2.039 ($\rm{H}_{\rm{20}}$ 31) $^{9}J_{2'03'}$ 15.5 Hz, $y_{2\alpha 1'} = 6.7$, $y_{2\alpha 3'} = 4.1$ Hz),
6.4 Hz); ¹⁹F NMR (470 MHz, D₂O:H₂O dd, 1 H, $^{3}J_{\gamma g2'a} = 13.5$ Hz, $^{3}J_{\gamma g1'} = 6.7$, $^{3}J_{\gamma g2'} = 4.1$ Hz), 1.233
ddd, 1 H, $^{2}J_{\gamma g2f} = 13.5$ Hz, $^{3}J_{\gamma g1'} = 6.7$, $^{3}J_{\gamma g3'} = 4.1$ Hz), 1.233 689.847 (d, 1 F, $3J_{\text{EFH}} = 7.0$ Hz); FAB-MS m/z (relative intensity) 231.0766 (231.0781, calcd for $C_9H_{11}N_2O_4F$; MH⁺, 49) and 131 (BH', 100).

Cytotoxicity Assay. The cytotoxicity assay using the human solid tumor cell line systems, following the microculture tetrazolium assay method,³⁰ was performed at the Purdue Cell Culture Laboratory. The target cells were HT-29 (human colon carcinoma), A-549 (human lung adenocarcinoma), and MCF-7 (human breast adenocarcinoma) cells.

Acknowledgment. We are grateful for the support of the National Cancer Institute (R 01 **CA** 44416).

Registry No. 1, 51-21-8; 2, 61168-97-6; 5'-deoxythymidine, 3458148; thymine, 6571-4; thymidine phosphorylase, 9030-23-3.

(30) Alley, M. C.; Scudiero, D. A.; **Monks, A.; Hureey, M. L.;** Czer-**winski, M.** J.; Fine, **D.** L.; **Abott,** B. J.; **Mayo,** J. **G.;** Shoemaker, R. **H.;** Boyd, **M.** R. Cancer *Res.* **1988,48,589.**

Chirality as a Probe in β -Keto Ester **Tautomerism'**

Carl P. Decicco^{*,†} and Ron N. Buckle

Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland, Canada, *A1B* 3x7

Received October **2,** 1991

Over the past two decades, significant advances in the development of asymmetric synthetic methods have been achieved.² A direct consequence of these advances is a substantial increase in our understanding of reaction pathways at a very fundamental level. In this paper, the use of chirality **as** a probe to study equilibria in chiral β -keto esters is detailed. This analysis provides a direct method to study keto-enol tautomerism³ utilizing NMR spectroscopy and details a ramification of having remote chiral centers in readily enolizable systems.

In a related investigation, we required a quantity of chiral keto ester **2. As** outlined in eq 1, (-)-menthyl 2-

oxocyclopentanecarboxylate (2) was prepared in 55% yield from 1. following the method of Taber.^{4,5} While an from 1, following the method of Taber.^{4,5} **unequal** mixture of epimers at **C1** was expected, we were intrigued to find that the **'H** and 13C NMR spectra indicated a single diastereomer of 2 was present in CDCl₃ solution at 20 °C (enol undetected by NMR). When 2 was analyzed in C_6D_6 at different times following dissolution, the emergence of a second product **(an** epimer at Cl) was observed. Figure 1 is a composite of **'H** NMR spectra of **2** (in C_6D_6) in the region of 1.8 to 5 ppm,⁶ taken over 5 h. The dd at 2.78 and the ddd at 4.90 ppm were identified as the protons on C1 (α -enolizable **H**) and C1', respectively. Note that a second overlapping dd appears at 2.78 and that

^{&#}x27;Present address: Dupont-Merck Pharmaceutical **Co.,** Experi- mental Station, PO **Box 80363,** Wilmington, DE **19880-0353.**